Sains Malaysiana 54(7)(2025): 1785-1796
http://doi.org/10.17576/jsm-2025-5407-12

 

Meneroka Keberkesanan Diskriminan Fisher dalam Pengelasan Morfologi Galaksi

(Exploring the Viability of Fisher Discriminants in Galaxy Morphology Classification)

 

SAZATUL NADHILAH ZAKARIA, SANTTOSH MUNIYANDY & JOHN Y.H. SOO*

 

School of Physics, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia

 

Diserahkan: 17 Mac 2025/Diterima: 19 Mei 2025

 

Abstrak

Salah satu cabaran terbesar dalam astronomi adalah pengelasan galaksi dengan tepat, terutamanya dalam membezakan antara jenis galaksi yang berbeza. Terdapat pelbagai algoritma kompleks yang telah menunjukkan prestasi tinggi dalam menjalankan tugas pengelasan, namun kerumitan algoritma ini kebiasaannya mengambil masa pemprosesan yang lebih lama dan sukar untuk difahami. Kajian kami menangani isu ini dengan meneroka keberkesanan diskriminan Fisher, suatu algoritma yang jauh lebih mudah dalam menjalankan pengelasan morfologi galaksi. Kami menguji empat algoritma pembelajaran mesin: diskriminan Fisher, Rangkaian Neural Buatan (ANN), Pokok Keputusan Tergalak (BDT) dan k-jiran terdekat (kNN) untuk mengelaskan galaksi berdasarkan bentuk bonjol pusat. Dengan menggunakan data dari Tinjauan Langit Digital Sloan (SDSS), kami menguji lima transformasi pemboleh ubah pra-pemprosesan: penormalan, nyahkorelasi, analisis komponen utama (PCA), penyeragaman dan Gaussanisasi, serta mengelaskan bentuk bonjol pusat galaksi kepada bentuk bulat atau tiada bonjol, berdasarkan Pokok Keputusan Galaxy Zoo. Apabila dibandingkan dengan label daripada Galaxy Zoo 2 (GZ2), diskriminan Fisher dengan transformasi penyeragaman memperoleh skor kejituan tertinggi iaitu 0.9310, melebihi ANN, BDT dan kNN masing-masing setinggi 1.93%, 0.42% dan 3.08%.

Kata kunci: Diskriminan Fisher; morfologi galaksi; pembelajaran mesin pengelasan galaksi; rangkaian neural buatan

 

Abstract

One of the major challenges in astronomy involves accurately classifying galaxies, particularly distinguishing between different galaxy types. While many complex algorithms have shown strong performance in classification tasks, their complexity often results in longer processing times and increased difficulty in understanding. This study addresses this issue by exploring the viability of Fisher discriminants, a much simpler algorithm, in performing galaxy morphology classification. We tested four machine learning algorithms: the Fisher discriminant, Artificial Neural Networks (ANNs), Boosted Decision Trees (BDTs), and k-Nearest Neighbours (kNNs) to classify galaxies by the shape of their central bulges. Using data from the Sloan Digital Sky Survey (SDSS), we utilised five pre-processing transformations: normalisation, decorrelation, principal component analysis (PCA), uniformisation, and Gaussanisation, and classified the shape of central bulge into either rounded or no-bulge, based on the Galaxy Zoo Decision Tree. When compared to the Galaxy Zoo 2 (GZ2) labels, the Fisher discriminant with uniformisation obtained the highest accuracy score of 0.9310, outperforming ANN, BDT, and kNN by 1.93%, 0.42%, and 3.08%, respectively.

Keywords: Artificial Neural Networks; fisher discriminants; galaxy classification; galaxy morphology; machine learning

    

RUJUKAN

Almeida, A., Anderson, S.F., Argudo-Fernández, M., Badenes, C., Barger, K., Barrera-Ballesteros, J.K. et al. 2023. The eighteenth data release of the sloan digital sky surveys: Targeting and first spectra from SDSS-V. The Astrophysical Journal Supplement Series 267(2): 44.

Beck, M.R., Scarlata, C., Fortson, L.F., Lintott, C.J., Simmons, B.D., Galloway, M.A., Willett, K.W., Dickinson, H., Masters, K.L., Marshall, P.J. & Wright, D. 2018. Integrating human and machine intelligence in galaxy morphology classification tasks. Monthly Notices of the Royal Astronomical Society 476(4): 5516-5534.

Bertin, E. & Arnouts, S. 1996. SExtractor: Software for source extraction. Astronomy and Astrophysics Supplement Series 117(2): 393-404.

Brun, R. & Rademakers, F. 1997. ROOT - An object oriented data analysis framework. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 389(1): 81-86.

Burkert, A. & Naab, T. 2003. Major mergers and the origin of elliptical galaxies. Dlm. Galaxies and Chaos, Lecture Notes in Physics 626, disunting oleh Contopoulos, G. & Voglis, N. Springer, Berlin, Heidelberg.

Buta, R.J. 2011. Galaxy morphology. arXiv preprint. arXiv:1102.0550.

Chen, T. & Guestrin, C. 2016. XGBoost: A scalable tree boosting system. 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ‘16). hlm. 785-794.

Dey, A., Schlegel, D.J., Lang, D., Blum, R., Burleigh, K., Fan, X., Findlay, J.R., Finkbeiner, D., Herrera, D., Juneau, S. et al. 2019. Overview of the DESI legacy imaging surveys. Astronomical Journal 157(5): 168.

De Diego, M.I., Redondo, A.R., Fernández, R.R., Navarro, J. & Moguerza, J.M. 2022. General performance score for classification problems. Applied Intelligence 52: 12049-12063.

Dickinson, H., Fortson, L., Lintott, C., Scarlata, C., Willett, K., Bamford, S., Beck, M., Cardamone, C., Galloway, M., Simmons, B., Keel, W., Kruk, S., Masters, K., Vogelsberger, M., Torrey, P. & Snyder, G.F. 2018. Galaxy zoo: Morphological classification of galaxy images from the illustris simulation. The Astrophysical Journal 853(2): 194.

Doi, M., Tanaka, M., Fukugita, M., Gunn, J.E., Yasuda, N., Ivezić, Ž., Brinkmann, J., de Haars, E., Kleinman, S.J., Krzesinski, J. & Leger, R.F. 2010. Photometric response functions of the sloan digital sky survey imager. The Astronomical Journal 139(4): 1628-1648.

Fisher, R.A. 1936. Annals Eugenics 7: 179.

Fraix-Burnet, D. 2023. Machine learning and galaxy morphology: For what purpose? Monthly Notices of the Royal Astronomical Society 523(3): 3974-3990.

Fukugita, M., Ichikawa, T., Gunn, J.E., Doi, M., Shimasaku, K. & Schneider, D.P. 1996. The sloan digital sky survey photometric system. Astronomical Journal 111(4): 1748.

Gunn, J.E., Siegmund, W.A., Mannery, E.J., Owen, R.E., Hull, C.L., French Leger, R., Carey, L.N., et al. 2006. The 2.5 m telescope of the sloan digital sky survey. Astronomical Journal 131(4): 2332-2359.

Gunn, J.E., Carr, M., Rockosi, C., Sekiguchi, M., Berry, K., Elms, B., de Haas, E. et al. 1998. The sloan digital sky survey photometric camera. Astronomical Journal 116(6): 3040-3081.

Hoecker, A., Speckmayer, P., Stelzer, J., Therhaag, J., von Toerne, E., Voss, H., Backes, M., Carli, T., Cohen, O., Christov, A., Dannheim, D., Danielowski, K., Henrot-Versille, S., Jachowski, M., Kraszewski, K., Krasznahorkay Jr. A.,  Kruk, M., Mahalalel, Y., Ospanov, R., Prudent, X., Robert, A., Schouten, D., Tegenfeldt, F., Voigt, A., Voss, K., Wolter, M. & Zemla, A. 2007. TMVA-toolkit for multivariate data analysis. arXiv preprint physics/0703039.

Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M. & Adam, H. 2017. MobileNets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861.

Huang, G., Liu, Z., Van Der Maaten, L. & Weinberger K.Q. 2017. Densely connected convolutional networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). hlm. 2261-2269.

Hubble, E.P. 1926. Extragalactic Nebulae. Astrophysical Journal 64: 321-369.

Le, T.T., Fu, W. & Moore, J.H. 2020. Scaling tree-based automated machine learning to biomedical big data with a feature set selector. Bioinformatics 36(1): 250-256.

Lintott, C.J., Schawinski, K., Slosar, A., Land, K., Bamford, S., Thomas, D., Raddick, M.J., Nichol, R.C., Szalay, A., Andreescu, D., Murray, P. & Vandenberg, J. 2008. Galaxy zoo: Morphologies derived from visual inspection of galaxies from the Sloan digital sky survey. Monthly Notices of the Royal Astronomical Society 389(3): 1179-1189.

López-Sanjuan, C., Vázquez Ramió, H., Varela, J., Spinoso, D., Angulo, R.E., Muniesa, D., Viironen, K., Cristóbal-HornillosD., CenarroA.J., EderocliteA., Marín-FranchA., MolesM., AscasoB., BonoliS., Chies-SantosA.L., CoelhoP.R.T., Costa-DuarteM.V., CortesiA., Díaz-GarcíaL.A., DupkeR.A., GalbanyL., Hernández-MonteagudoC., Logroño-GarcíaR., MolinoA., OrsiA., PlaccoV.M., SampedroL., San RomanI., Vilella-RojoG., WhittenD.D., Mendes de Oliveira, C.L. Sodré Jr., L. 2019. J-PLUS: morphological star/galaxy classification by PDF analysis. Astronomy and Astrophysics 622: A177.

Mahmud Pathi, I., Soo, J.Y.H., Wee, M.J., Zakaria, S.N., Ismail, N.A., Baugh, C.M., Manzoni, G., Gaztanaga, E., Castander, F.J., Eriksen, M., Carretero, J., Fernandez, E., Garcia-Bellido, J., Miquel, R., Padilla, C., Renard, P., Sanchez, E., Sevilla-Noarbe, I. & Tallada-Crespí, P. 2025. ANNz+: an enhanced photometric redshift estimation algorithm with applications on the PAU survey. Journal of Cosmology and Astroparticle Physics 2025: 097.

Paterson, K. 2017. MeerLICHT: MeerKAT’s Optical Eye. Proceedings of the International Astronomical Union 14(S339): 203.

Raichoor, A., Comparat, J., Delubac, T., Kneib, J.-P., Yèche, C., Zou, H., Abdalla, F.B., Dawson, K., de la Macorra, A., Fan, X., Fan, Z., Jiang, Z., Jing, Y., Jouvel, S., Lang, D., Lesser, M., Li, C., Ma, J., Newman, J.A., Nie, J., Palanque-Delabrouille, N., Percival, W.J., Prada, F., Shen, S., Wang, J., Wu, Z., Zhang, T., Zhou, X. & Zhou, Z. 2015. The SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Selecting emission line galaxies using the Fisher discriminant. Astronomy and Astrophysics 585: A50.

Reza, M. 2021. Galaxy morphology classification using automated machine learning. Astronomy and Computing 37: 100492.

Sadeh, I., Abdalla, F.B. & Lahav, O. 2016. ANNZ2: Photometric redshift and probability distribution function estimation using machine learning. Astronomical Society of the Pacific 128(968): 104502.

Simmons, B.D., Lintott, C., Willett, K.W., Masters, K.L., Kartaltepe, J.S., Häußler, B., Kaviraj, S. et al. 2016. Galaxy Zoo: Quantitative Visual Morphological Classifications for 48,000 Galaxies from CANDELS. Monthly Notices of the Royal Astronomical Society 464(4): 4420-4447.

Stoppa, F., Bhattacharyya, S., de Austri, R., Vreeswijk, P., Caron, S., Zaharijas, G., Bloemen, S., Principe, G., Malyshev, D., Vodeb, V., Groot, P.J., Cator, E. & Nelemans, G. 2023. AutoSourceID-Classifier: Star-galaxy classification using a convolutional neural network with spatial information. Astronomy and Astrophysics 680: A109.

Stoughton, C., Lupton, R.H., Bernardi, M., Blanton, M.R., Burles, S., Castander, F.J., Connolly, A.J., et al. 2002. Sloan Digital Sky Survey: Early data release. The Astronomical Journal 123(1): 485-548.

Tan, M. & Le, Q.V. 2019. EfficientNet: Rethinking model scaling for convolutional neural networks. Proceedings of the 36th International Conference on Machine Learning. PMLR 97: 6105-6114.

Urechiatu, R. & Frincu, M. 2024. Improved galaxy morphology classification with convolutional neural networks. Universe 10(6): 230.

Vavilova, I.B., Dobrycheva, D.V., Vasylenko, M.Y., Elyiv, A.A., Melnyk, O.V. & Khramtsov, V. 2021. Machine learning technique for morphological classification of galaxies from the SDSS: I. Photometry-based approach. Astronomy and Astrophysics 648: A122.

von Marttens, R., Marra, V., Quartin, M., Casarini, L., Baqui, P.O., Alvarez-Candal, A., Galindo-Guil, F.J., Fernández-Ontiveros, J.A., del Pino, A., Díaz-García, L.A., López-Sanjuan, C., Alcaniz, J., Angulo, R., Cenarro, A.J., Cristóbal-Hornillos, D., Dupke, R., Ederoclite, A., Hernández-Monteagudo, C., Marín-Franch, A., Moles, M., Sodré, L., Varela, J. & Vázquez Ramió, H. 2023. J-PLUS: Galaxy-Star-Quasar classification for DR3. Monthly Notices of the Royal Astronomical Society 527(2): 3347-3365.

Weglarczyk, S. 2018. Kernel density estimation and its application. ITM web of conferences. EDP Sciences 23: 00037. 

Willett, K.W., Galloway, M.A., Bamford, S.P., Lintott, C.J., Masters, K.L., Scarlata, C., Simmons, B.D., Beck, M., Cardamone, C.N., Cheung, E., Edmondson, E.M., Fortson, L.F., Griffith, R.L., Haeussler, B., Han, A., Hart, R., Melvin, T., Parrish, M., Schawinski, K., Smethurst, R.J. & Smith, A.M. 2016. Galaxy Zoo: Morphological Classifications for 120,000 Galaxies in HST Legacy Imaging. Monthly Notices of the Royal Astronomical Society 464(4): 4176-4203.

Willett, K.W., Lintott, C.J., Bamford, S.P., Masters, K.L., Simmons, B.D., Casteels, K.R.V., Edmondson, E.M., Fortson, L.F., Kaviraj, S., Keel, W.C., Melvin, T., Nichol, R.C., Raddick, M.J. Schawinski, K., Simpson, R.J., Skibba, R.A., Smith, A.M. & Thomas, D. 2013. Galaxy zoo 2: Detailed morphological classifications for 304 122 galaxies from the Sloan Digital Sky Survey. Monthly Notices of the Royal Astronomical Society 435(4): 2835-2860.

Xie, Y., Byrd, R.H. & Nocedal, J. 2020. Analysis of the BFGS method with errors. SIAM Journal on Optimization 30(1): 182-209.

York, D.G., Adelman, J., Anderson Jr., J.E., Anderson, S.F., Annis, J., Bahcall, N.A., Bakken, J.A. et al. 2000. The Sloan Digital Sky Survey: Technical summary. Astronomical Journal 120(3): 1579-1587.

Zhu, X-P., Dai, J-M., Bian, C-J., Chen, Y., Chen, S. & Hu, C. 2019. Galaxy morphology classification with deep convolutional neural networks. Astrophysics and Space Science 364(4): 55.

 

*Pengarang untuk surat-menyurat; email: johnsooyh@usm.my

 

 

 

 

 

 

 

           

sebelumnya